What Is An IP Address? How Does It Work?

Discover how IP addresses work and what IP addresses are available.

Definition Definition What is IPv4 How to Locate IP Address

IP Address Definition and Explanation

An Internet Protocol (IP) address is the unique identifying number assigned to every device connected to the internet. An IP address definition is a numeric label assigned to devices that use the internet to communicate. Computers that communicate over the internet or via local networks share information to a specific location using IP addresses.

IP addresses have two distinct versions or standards. The Internet Protocol version 4 (IPv4) address is the older of the two, which has space for up to 4 billion IP addresses and is assigned to all computers. The more recent Internet Protocol version 6 (IPv6) has space for trillions of IP addresses, which accounts for the new breed of devices in addition to computers. There are also several types of IP addresses, including public, private, static, and dynamic IP addresses.

Every device with an internet connection has an IP address, whether it's a computer, laptop, IoT device, or even toys. The IP addresses allow for the efficient transfer of data between two connected devices, allowing machines on different networks to talk to each other.

How does an IP address work?

An IP address works in helping your device, whatever you are accessing the internet on, to find whatever data or content is located to allow for retrieval.

Common tasks for an IP address include both the identification of a host or a network, or identifying the location of a device. An IP address is not random. The creation of an IP address has the basis of math. The Internet Assigned Numbers Authority (IANA) allocates the IP address and its creation. The full range of IP addresses can go from 0.0.0.0 to 255.255.255.255.

With the mathematical assignment of an IP address, the unique identification to make a connection to a destination can be made.

Public IP address

A public IP address, or external-facing IP address, applies to the main device people use to connect their business or home internet network to their internet service provider (ISP). In most cases, this will be the router. All devices that connect to a router communicate with other IP addresses using the router’s IP address.

Knowing an external-facing IP address is crucial for people to open ports used for online gaming, email and web servers, media streaming, and creating remote connections.

Private IP address

A private IP address, or internal-facing IP address, is assigned by an office or home intranet (or local area network) to devices, or by the internet service provider (ISP). The home/office router manages the private IP addresses to the devices that connect to it from within that local network. Network devices are thus mapped from their private IP addresses to public IP addresses by the router.

Private IP addresses are reused across multiple networks, thus preserving valuable IPv4 address space and extending addressability beyond the simple limit of IPv4 addressing (4,294,967,296 or 2^32).

In the IPv6 addressing scheme, every possible device has its own unique identifier assigned by the ISP or primary network organization, which has a unique prefix. Private addressing is possible in IPv6, and when it's used it's called Unique Local Addressing (ULA).

Static IP address

All public and private addresses are defined as static or dynamic. An IP address that a person manually configures and fixes to their device’s network is referred to as a static IP address. A static IP address cannot be changed automatically. An internet service provider may assign a static IP address to a user account. The same IP address will be assigned to that user for every session.

Dynamic IP address

A dynamic IP address is automatically assigned to a network when a router is set up. The Dynamic Host Configuration Protocol (DHCP) assigns the distribution of this dynamic set of IP addresses. The DHCP can be the router that provides IP addresses to networks across a home or an organization.

Each time a user logs into the network, a fresh IP address is assigned from the pool of available (currently unassigned) IP addresses. A user may randomly cycle through several IP addresses across multiple sessions.

4 types of IP addresses

Click to See Larger Image

Global Threat Landscape Report 2H 2023

FortiGuard Labs Global Threat Landscape Report 2H 2023 shows Cybercriminals Exploiting New Industry Vulnerabilities 43% Faster than 1H 2023.

Download Now

What Is IPv4?

IPv4 is the fourth version of the IP. It is one of the core protocols of the standards-based methods used to interconnect the internet and other networks. The protocol was first deployed on the Atlantic Packet Satellite Network (SATNET), which was a satellite network that formed a segment of the initial stages of the internet, in 1982. It is still used to route most internet traffic despite the existence of IPv6.

IPv4 is currently assigned to all computers. An IPv4 address uses 32-bit binary numbers to form a unique IP address. It takes the format of four sets of numbers, each of which ranges from 0 to 255 and represents an eight-digit binary number, separated by a period point.

IP Address Classes

Some IP addresses are reserved by the Internet Assigned Numbers Authority (IANA). These are typically reserved for networks that carry a specific purpose on the Transmission Control Protocol/Internet Protocol (TCP/IP), which is used to interconnect devices. Four of these IP address classes include:

  1. 0.0.0.0: This IP address in IPv4 is also known as the default network. It is the non-routeable meta address that designates an invalid, non-applicable, or unknown network target.
  2. 127.0.0.1: This IP address is known as the loopback address, which a computer uses to identify itself regardless of whether it has been assigned an IP address.
  3. 169.254.0.1 to 169.254.254.254: A range of addresses that are automatically assigned if a computer is unsuccessful in an attempt to receive an address from the DHCP.
  4. 255.255.255.255: An address dedicated to messages that need to be sent to every computer on a network or broadcasted across a network.

Further reserved IP addresses are for what is known as subnet classes. Subnetworks are small computer networks that connect to a bigger network via a router. The subnet can be assigned its own IP address system, so that all devices connecting to it can communicate with each other without having to send data via the wider network.

The router on a TCP/IP network can be configured to ensure it recognizes subnets, then route the traffic onto the appropriate network. IP addresses are reserved for the following subnets:

  1. Class A: IP addresses between 10.0.0.0 and 10.255.255.255
  2. Class B: IP addresses between 172.16.0.0 and 172.31.255.255
  3. Class C: IP addresses between 192.186.0.0 and 192.168.255.255
  4. Class D or multicast: IP addresses between 224.0.0.0 and 239.255.255.255
  5. Class E, which are reserved for experimental usage: IP addresses between 240.0.0.0 and 254.255.255.254

IP addresses listed under Class A, Class B, and Class C are most commonly used in the creation of subnets. Addresses within the multicast or Class D have specific usage rules outlined in the Internet Engineering Task Force (IETF) guidelines, while the release of Class E addresses for public use was the cause of plenty of debate before the IPv6 standard was introduced.

Internet Addresses and Subnets

The IANA reserves specific IP address blocks for commercial organizations, government departments, and ISPs. When a user connects to the internet, their ISP assigns them an address from within one of the blocks assigned to it. If they only go online from one computer, then they can use the address assigned to it by their ISP.

However, most homes now use routers that share a network connection with multiple devices. So if a router is used to share the connection, then the ISP assigns the IP address to the router, and then a subnet is created for all computers that connect to it.

IP addresses that fall within a subnet have a network and a node. The subnet is identified by the network. The node, also known as the host, connects to the network and needs its own address. Computers separate the network and node via a subnet mask, which filters the appropriate IP address designation. When a large network is set up, the subnet mask that best fits the number of nodes or subnets required is determined.

When it comes to IP addresses within a subnet, the first address is reserved for the subnet, and the final one indicates the broadcast address for the subnet’s systems.

IPv4 vs. IPv6

IPv4 has not been able to cope with the massive explosion in the quantity and range of devices beyond simply mobile phones, desktop computers, and laptops. The original IP address format was not able to handle the number of IP addresses being created.

To address this problem, IPv6 was introduced. This new standard operates a hexadecimal format that means billions of unique IP addresses can now be created. As a result, the IPv4 system that could support up to around 4.3 billion unique numbers has been replaced by an alternative that, theoretically, offers unlimited IP addresses.

That is because an IPv6 IP address consists of eight groups that contain four hexadecimal digits, which use 16 distinct symbols of 0 to 9 followed by A to F to represent values of 10 to 15.

How Do I Locate My IP Address?

Windows computer users can look up their IP address by typing "cmd" into the search tab and hitting Enter, then typing "ipconfig" into the pop-up box. Mac computer users can find their IP address by heading into System Preferences and selecting Network.

To look up an IP address on a mobile phone, users need to head into Settings, then open the Wi-Fi menu and their network menu. The IP address should be listed under the Advanced section, depending on the phone they use.

IP address vs. MAC address

When you analyze an IP address vs. a MAC address, you can start with the similarities. For both of these IP address types, you are dealing with a unique identifier with an attachment to that device. The manufacturer of a network card or router is the provider of the MAC address, while the internet service provider (ISP) is the provider of the IP address.

The main difference between the two is that the MAC address is the physical address of a device. If you have five laptops on your home Wi-Fi network, you can identify each of those five laptops on your network via their MAC address.

The IP address works differently as it is the identifier of the connection of the network with that device. Other differences include:

What are security threats related to IP addresses?

A variety of security threats are related to IP addresses. Cybercriminals can deceive devices to either reveal your IP address and pretend they are you or stalk it to track activity and take advantage. Online stalking and social engineering are the two leading security threats existing for IP addresses.

Some of the other security threats to an IP address include:

  1. Allowing a cybercriminal to use your IP address to track your location
  2. Using your IP address to target your network and launch a DDoS attack
  3. Using your IP address to download illegal content

5 ways to protect your IP address

There are multiple ways to protect your IP address from cybercriminals. Some of these options include:

  1. Use a VPN
  2. Make use of a proxy server
  3. Have your ISP make use of dynamic IP addresses
  4. Employ a NAT firewall to hide your private IP address
  5. Resetting your modem may change your IP address